| Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keys update from David Howells:
"This adds support for ML-DSA signatures in X.509 certificates and
PKCS#7/CMS messages, thereby allowing this algorithm to be used for
signing modules, kexec'able binaries, wifi regulatory data, etc..
This requires OpenSSL-3.5 at a minimum and preferably OpenSSL-4 (so
that it can avoid the use of CMS signedAttrs - but that version is not
cut yet). certs/Kconfig does a check to hide the signing options if
OpenSSL does not list the algorithm as being available"
* tag 'keys-next-20260206' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
pkcs7: Change a pr_warn() to pr_warn_once()
pkcs7: Allow authenticatedAttributes for ML-DSA
modsign: Enable ML-DSA module signing
pkcs7, x509: Add ML-DSA support
pkcs7: Allow the signing algo to do whatever digestion it wants itself
pkcs7, x509: Rename ->digest to ->m
x509: Separately calculate sha256 for blacklist
crypto: Add ML-DSA crypto_sig support
|
|
Add verify-only public key crypto support for ML-DSA so that the
X.509/PKCS#7 signature verification code, as used by module signing,
amongst other things, can make use of it through the common crypto_sig API.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
cc: Eric Biggers <ebiggers@kernel.org>
cc: Lukas Wunner <lukas@wunner.de>
cc: Ignat Korchagin <ignat@cloudflare.com>
cc: Stephan Mueller <smueller@chronox.de>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: keyrings@vger.kernel.org
cc: linux-crypto@vger.kernel.org
|
|
Remove aes-fixed-time, i.e. CONFIG_CRYPTO_AES_TI. This was a wrapper
around the 256-byte-table-based AES implementation in lib/crypto/aes.c,
with extra code to enable and disable IRQs for constant-time hardening.
While nice in theory, in practice this had the following issues:
- For bulk en/decryption it was 2-4 times slower than aes-generic. This
resulted in aes-generic still being needed, creating fragmentation.
- Having both aes-generic and aes-fixed-time punted an AES
implementation decision to distros and users who are generally
unprepared to handle it. In practice, whether aes-fixed-time gets
used tends to be incidental and not match an explicit distro or user
intent. (While aes-fixed-time has a higher priority than aes-generic,
whether it actually gets enabled, loaded, and used depends on the
kconfig and whether a modprobe of "aes" happens to be done. It also
has a lower priority than aes-arm and aes-arm64.)
- My changes to the generic AES code (in other commits) significantly
close the gap with aes-fixed-time anyway. The table size is reduced
from 8192 bytes to 1024 bytes, and prefetching is added.
- While AES code *should* be constant-time, the real solutions for that
are AES instructions (which most CPUs have now) or bit-slicing. arm
and arm64 already have bit-sliced AES code for many modes; generic
bit-sliced code could be written but would be very slow for single
blocks. Overall, I suggest that trying to write constant-time
table-based AES code is a bit futile anyway, and in the rare cases
where a proper AES implementation is still unavailable it's reasonable
to compromise with an implementation that simply prefetches the table.
Thus, this commit removes aes-fixed-time and CONFIG_CRYPTO_AES_TI. The
replacement is just the existing CONFIG_CRYPTO_AES, which for now maps
to the existing aes-generic code, but I'll soon be changing to use the
improved AES library code instead.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20260112192035.10427-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Instead of crypto_ft_tab[0] from aes_generic.c, use aes_enc_tab from
lib/crypto/aes.c. These contain the same data, so the result is the
same. This will allow aes_generic.c to eventually be removed.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20260112192035.10427-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Remove nhpoly1305 support from crypto_shash. It no longer has any user
now that crypto/adiantum.c no longer uses it.
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Link: https://lore.kernel.org/r/20251211011846.8179-11-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Reimplement the Adiantum message hashing using the nh() library
function, combined with some code which directly handles the Poly1305
stage. The latter code is derived from crypto/nhpoly1305.c.
This eliminates the dependency on the "nhpoly1305" crypto_shash
algorithm, which existed only to fit Adiantum message hashing into the
traditional Linux crypto API paradigm. Now that simple,
architecture-optimized library functions are a well-established option
too, we can switch to this simpler implementation.
Note: I've dropped the support for the optional third parameter of the
adiantum template, which specified the nhpoly1305 implementation. We
could keep accepting some strings in this parameter for backwards
compatibility, but I don't think it's being used. I believe only
"adiantum(xchacha12,aes)" and "adiantum(xchacha20,aes)" are used.
Link: https://lore.kernel.org/r/20251211011846.8179-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Rewrite memcpy_sglist from scratch
- Add on-stack AEAD request allocation
- Fix partial block processing in ahash
Algorithms:
- Remove ansi_cprng
- Remove tcrypt tests for poly1305
- Fix EINPROGRESS processing in authenc
- Fix double-free in zstd
Drivers:
- Use drbg ctr helper when reseeding xilinx-trng
- Add support for PCI device 0x115A to ccp
- Add support of paes in caam
- Add support for aes-xts in dthev2
Others:
- Use likely in rhashtable lookup
- Fix lockdep false-positive in padata by removing a helper"
* tag 'v6.19-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (71 commits)
crypto: zstd - fix double-free in per-CPU stream cleanup
crypto: ahash - Zero positive err value in ahash_update_finish
crypto: ahash - Fix crypto_ahash_import with partial block data
crypto: lib/mpi - use min() instead of min_t()
crypto: ccp - use min() instead of min_t()
hwrng: core - use min3() instead of nested min_t()
crypto: aesni - ctr_crypt() use min() instead of min_t()
crypto: drbg - Delete unused ctx from struct sdesc
crypto: testmgr - Add missing DES weak and semi-weak key tests
Revert "crypto: scatterwalk - Move skcipher walk and use it for memcpy_sglist"
crypto: scatterwalk - Fix memcpy_sglist() to always succeed
crypto: iaa - Request to add Kanchana P Sridhar to Maintainers.
crypto: tcrypt - Remove unused poly1305 support
crypto: ansi_cprng - Remove unused ansi_cprng algorithm
crypto: asymmetric_keys - fix uninitialized pointers with free attribute
KEYS: Avoid -Wflex-array-member-not-at-end warning
crypto: ccree - Correctly handle return of sg_nents_for_len
crypto: starfive - Correctly handle return of sg_nents_for_len
crypto: iaa - Fix incorrect return value in save_iaa_wq()
crypto: zstd - Remove unnecessary size_t cast
...
|
|
Remove ansi_cprng, since it's obsolete and unused, as confirmed at
https://lore.kernel.org/r/aQxpnckYMgAAOLpZ@gondor.apana.org.au/
This was originally added in 2008, apparently as a FIPS approved random
number generator. Whether this has ever belonged upstream is
questionable. Either way, ansi_cprng is no longer usable for this
purpose, since it's been superseded by the more modern algorithms in
crypto/drbg.c, and FIPS itself no longer allows it. (NIST SP 800-131A
Rev 1 (2015) says that RNGs based on ANSI X9.31 will be disallowed after
2015. NIST SP 800-131A Rev 2 (2019) confirms they are now disallowed.)
Therefore, there is no reason to keep it around.
Suggested-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Haotian Zhang <vulab@iscas.ac.cn>
Cc: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove polyval support from crypto_shash. It no longer has any user now
that the HCTR2 code uses the POLYVAL library instead.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251109234726.638437-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
The "hash function" in hctr2 is fixed at POLYVAL; it can never vary.
Just use the POLYVAL library, which is much easier to use than the
crypto_shash API. It's faster, uses fixed-size structs, and never fails
(all the functions return void).
Note that this eliminates the only known user of the polyval support in
crypto_shash. A later commit will remove support for polyval from
crypto_shash, given that the library API is sufficient.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251109234726.638437-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Replace sha3_generic.c with a new file sha3.c which implements the SHA-3
crypto_shash algorithms on top of the SHA-3 library API.
Change the driver name suffix from "-generic" to "-lib" to reflect that
these algorithms now just use the (possibly arch-optimized) library.
This closely mirrors crypto/{md5,sha1,sha256,sha512,blake2b}.c.
Implement export_core and import_core, since crypto/hmac.c expects these
to be present. (Note that there is no security purpose in wrapping
SHA-3 with HMAC. HMAC was designed for older algorithms that don't
resist length extension attacks. But since someone could be using
"hmac(sha3-*)" via crypto_shash anyway, keep supporting it for now.)
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Harald Freudenberger <freude@linux.ibm.com>
Link: https://lore.kernel.org/r/20251026055032.1413733-15-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Replace blake2b_generic.c with a new file blake2b.c which implements the
BLAKE2b crypto_shash algorithms on top of the BLAKE2b library API.
Change the driver name suffix from "-generic" to "-lib" to reflect that
these algorithms now just use the (possibly arch-optimized) library.
This closely mirrors crypto/{md5,sha1,sha256,sha512}.c.
Remove include/crypto/internal/blake2b.h since it is no longer used.
Likewise, remove struct blake2b_state from include/crypto/blake2b.h.
Omit support for import_core and export_core, since there are no legacy
drivers that need these for these algorithms.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20251018043106.375964-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Export drbg_ctr_df() derivative function to new module df_sp80090.
Signed-off-by: Harsh Jain <h.jain@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Curve25519 has both a library API and a crypto_kpp API. However, the
crypto_kpp API for Curve25519 had no users outside crypto/testmgr.c.
I.e., no non-test code ever passed "curve25519" to crypto_alloc_kpp().
Remove this unused code. We'll instead focus on the Curve25519 library
API (<crypto/curve25519.h>), which is a simpler and easier-to-use API
and is the API that is actually being used.
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Link: https://lore.kernel.org/r/20250906213523.84915-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
For the "chacha20", "xchacha20", and "xchacha12" skcipher algorithms,
instead of registering "*-generic" drivers as well as conditionally
registering "*-$(ARCH)" drivers, instead just register "*-lib" drivers.
These just use the regular library functions, so they just do the right
thing and are fully accelerated when supported by the CPU.
This eliminates the need for the ChaCha library to support
chacha_crypt_generic() and hchacha_block_generic() as part of its
external interface. A later commit will make chacha_crypt_generic() a
static function.
Since this commit removes several "*-generic" driver names which
crypto/testmgr.c expects to exist, update testmgr.c accordingly.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250827151131.27733-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Consolidate the Poly1305 code into a single module, similar to various
other algorithms (SHA-1, SHA-256, SHA-512, etc.):
- Each arch now provides a header file lib/crypto/$(SRCARCH)/poly1305.h,
replacing lib/crypto/$(SRCARCH)/poly1305*.c. The header defines
poly1305_block_init(), poly1305_blocks(), poly1305_emit(), and
optionally poly1305_mod_init_arch(). It is included by
lib/crypto/poly1305.c, and thus the code gets built into the single
libpoly1305 module, with improved inlining in some cases.
- Whether arch-optimized Poly1305 is buildable is now controlled
centrally by lib/crypto/Kconfig instead of by
lib/crypto/$(SRCARCH)/Kconfig. The conditions for enabling it remain
the same as before, and it remains enabled by default. (The PPC64 one
remains unconditionally disabled due to 'depends on BROKEN'.)
- Any additional arch-specific translation units for the optimized
Poly1305 code, such as assembly files, are now compiled by
lib/crypto/Makefile instead of lib/crypto/$(SRCARCH)/Makefile.
A special consideration is needed because the Adiantum code uses the
poly1305_core_*() functions directly. For now, just carry forward that
approach. This means retaining the CRYPTO_LIB_POLY1305_GENERIC kconfig
symbol, and keeping the poly1305_core_*() functions in separate
translation units. So it's not quite as streamlined I've done with the
other hash functions, but we still get a single libpoly1305 module.
Note: to see the diff from the arm, arm64, and x86 .c files to the new
.h files, view this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250829152513.92459-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Reimplement crypto/md5.c on top of the new MD5 library functions. Also
add support for HMAC-MD5, again just wrapping the library functions.
This closely mirrors crypto/sha1.c.
Link: https://lore.kernel.org/r/20250805222855.10362-7-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Like I did for crypto/sha512.c, rework crypto/sha1_generic.c (renamed to
crypto/sha1.c) to simply wrap the normal library functions instead of
accessing the low-level block function directly. Also add support for
HMAC-SHA1, again just wrapping the library functions.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them driver names
ending with "-lib" rather than "-generic". Update crypto/testmgr.c and
an odd driver to take this change in driver name into account.
Note: to see the diff from crypto/sha1_generic.c to crypto/sha1.c, view
this commit with 'git show -M10'.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250712232329.818226-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
crypto/hash_info.c just contains a couple of arrays that map HASH_ALGO_*
algorithm IDs to properties of those algorithms. It is compiled only
when CRYPTO_HASH_INFO=y, but currently CRYPTO_HASH_INFO depends on
CRYPTO. Since this can be useful without the old-school crypto API,
move it into lib/crypto/ so that it no longer depends on CRYPTO.
This eliminates the need for FS_VERITY to select CRYPTO after it's been
converted to use lib/crypto/.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630172224.46909-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Like I did for crypto/sha512.c, rework crypto/sha256.c to simply wrap
the normal library functions instead of accessing the low-level arch-
optimized and generic block functions directly. Also add support for
HMAC-SHA224 and HMAC-SHA256, again just wrapping the library functions.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them driver names
ending with "-lib" rather than "-generic". Update crypto/testmgr.c and
a couple odd drivers to take this change in driver name into account.
Besides the above cases which are accounted for, there are no known
cases where the driver names were being depended on. There is
potential for confusion for people manually checking /proc/crypto (e.g.
https://lore.kernel.org/r/9e33c893-2466-4d4e-afb1-966334e451a2@linux.ibm.com/),
but really people just need to get used to the driver name not being
meaningful for the software algorithms. Historically, the optimized
code was disabled by default, so there was some purpose to checking
whether it was enabled or not. However, this is now fixed for all SHA-2
algorithms, and the library code just always does the right thing. E.g.
if the CPU supports SHA-256 instructions, they are used.
This change does also mean that the generic partial block handling code
in crypto/shash.c, which got added in 6.16, no longer gets used. But
that's fine; the library has to implement the partial block handling
anyway, and it's better to do it in the library since the block size and
other properties of the algorithm are all fixed at compile time there,
resulting in more streamlined code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-10-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Delete crypto/sha512_generic.c, which provided "generic" SHA-384 and
SHA-512 crypto_shash algorithms. Replace it with crypto/sha512.c which
provides SHA-384, SHA-512, HMAC-SHA384, and HMAC-SHA512 crypto_shash
algorithms using the corresponding library functions.
This is a prerequisite for migrating all the arch-optimized SHA-512 code
(which is almost 3000 lines) to lib/crypto/ rather than duplicating it.
Since the replacement crypto_shash algorithms are implemented using the
(potentially arch-optimized) library functions, give them
cra_driver_names ending with "-lib" rather than "-generic". Update
crypto/testmgr.c and one odd driver to take this change in driver name
into account. Besides these cases which are accounted for, there are no
known cases where the cra_driver_name was being depended on.
This change does mean that the abstract partial block handling code in
crypto/shash.c, which got added in 6.16, no longer gets used. But
that's fine; the library has to implement the partial block handling
anyway, and it's better to do it in the library since the block size and
other properties of the algorithm are all fixed at compile time there,
resulting in more streamlined code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160320.2888-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Commit 698de822780f ("crypto: testmgr - make it easier to enable the
full set of tests") removed support for building kernels that run only
the "fast" set of crypto self-tests by default. This assumed that
nearly everyone actually wanted the full set of tests, *if* they had
already chosen to enable the tests at all.
Unfortunately, it turns out that both Debian and Fedora intentionally
have the crypto self-tests enabled in their production kernels. And for
production kernels we do need to keep the testing time down, which
implies just running the "fast" tests, not the full set of tests.
For Fedora, a reason for enabling the tests in production is that they
are being (mis)used to meet the FIPS 140-3 pre-operational testing
requirement.
However, the other reason for enabling the tests in production, which
applies to both distros, is that they provide some value in protecting
users from buggy drivers. Unfortunately, the crypto/ subsystem has many
buggy and untested drivers for off-CPU hardware accelerators on rare
platforms. These broken drivers get shipped to users, and there have
been multiple examples of the tests preventing these buggy drivers from
being used. So effectively, the tests are being relied on in production
kernels. I think this is kind of crazy (untested drivers should just
not be enabled at all), but that seems to be how things work currently.
Thus, reintroduce a kconfig option that controls the level of testing.
Call it CRYPTO_SELFTESTS_FULL instead of the original name
CRYPTO_MANAGER_EXTRA_TESTS, which was slightly misleading.
Moreover, given the "production kernel" use case, make CRYPTO_SELFTESTS
depend on EXPERT instead of DEBUG_KERNEL.
I also haven't reinstated all the #ifdefs in crypto/testmgr.c. Instead,
just rely on the compiler to optimize out unused code.
Fixes: 40b9969796bf ("crypto: testmgr - replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS")
Fixes: 698de822780f ("crypto: testmgr - make it easier to enable the full set of tests")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
crypto/testmgr.c is compiled only when CRYPTO_MANAGER is enabled. To
make CRYPTO_SELFTESTS work as expected when CRYPTO_MANAGER doesn't get
enabled for another reason, automatically set CRYPTO_MANAGER to the
value of CRYPTO_ALGAPI when CRYPTO_SELFTESTS is enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
There is no reason for people configuring the kernel to be asked about
CRYPTO_MANAGER, so make it a hidden symbol.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently the full set of crypto self-tests requires
CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y. This is problematic in two ways.
First, developers regularly overlook this option. Second, the
description of the tests as "extra" sometimes gives the impression that
it is not required that all algorithms pass these tests.
Given that the main use case for the crypto self-tests is for
developers, make enabling CONFIG_CRYPTO_SELFTESTS=y just enable the full
set of crypto self-tests by default.
The slow tests can still be disabled by adding the command-line
parameter cryptomgr.noextratests=1, soon to be renamed to
cryptomgr.noslowtests=1. The only known use case for doing this is for
people trying to use the crypto self-tests to satisfy the FIPS 140-3
pre-operational self-testing requirements when the kernel is being
validated as a FIPS 140-3 cryptographic module.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The negative-sense of CRYPTO_MANAGER_DISABLE_TESTS is a longstanding
mistake that regularly causes confusion. Especially bad is that you can
have CRYPTO=n && CRYPTO_MANAGER_DISABLE_TESTS=n, which is ambiguous.
Replace CRYPTO_MANAGER_DISABLE_TESTS with CRYPTO_SELFTESTS which has the
expected behavior.
The tests continue to be disabled by default.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
tcrypt is actually a benchmarking module and not the actual tests. This
regularly causes confusion. Update the kconfig option name and help
text accordingly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
There is no reason to have separate CRYPTO_NULL2 and CRYPTO_NULL
options. Just merge them into CRYPTO_NULL.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The krb5enc code does not use any of the so-called "null algorithms", so
it does not need to select CRYPTO_NULL. Presumably this unused
dependency got copied from one of the other kconfig options.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For copying data between two scatterlists, just use memcpy_sglist()
instead of the so-called "null skcipher". This is much simpler.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For copying data between two scatterlists, just use memcpy_sglist()
instead of the so-called "null skcipher". This is much simpler.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For copying data between two scatterlists, just use memcpy_sglist()
instead of the so-called "null skcipher". This is much simpler.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
For copying data between two scatterlists, just use memcpy_sglist()
instead of the so-called "null skcipher". This is much simpler.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As has been done for various other algorithms, rework the design of the
SHA-256 library to support arch-optimized implementations, and make
crypto/sha256.c expose both generic and arch-optimized shash algorithms
that wrap the library functions.
This allows users of the SHA-256 library functions to take advantage of
the arch-optimized code, and this makes it much simpler to integrate
SHA-256 for each architecture.
Note that sha256_base.h is not used in the new design. It will be
removed once all the architecture-specific code has been updated.
Move the generic block function into its own module to avoid a circular
dependency from libsha256.ko => sha256-$ARCH.ko => libsha256.ko.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add export and import functions to maintain existing export format.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
As there are no in-kernel users of the Crypto API poly1305 left,
remove it.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since the poly1305 algorithm is fixed, there is no point in going
through the Crypto API for it. Use the lib/crypto poly1305 interface
instead.
For compatiblity keep the poly1305 parameter in the algorithm name.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the architecture-optimized Poly1305 kconfig symbols are defined
regardless of CRYPTO, there is no need for CRYPTO_LIB_POLY1305 to select
CRYPTO. So, remove that. This makes the indirection through the
CRYPTO_LIB_POLY1305_INTERNAL symbol unnecessary, so get rid of that and
just use CRYPTO_LIB_POLY1305 directly. Finally, make the fallback to
the generic implementation use a default value instead of a select; this
makes it consistent with how the arch-optimized code gets enabled and
also with how CRYPTO_LIB_BLAKE2S_GENERIC gets enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that the architecture-optimized ChaCha kconfig symbols are defined
regardless of CRYPTO, there is no need for CRYPTO_LIB_CHACHA to select
CRYPTO. So, remove that. This makes the indirection through the
CRYPTO_LIB_CHACHA_INTERNAL symbol unnecessary, so get rid of that and
just use CRYPTO_LIB_CHACHA directly. Finally, make the fallback to the
generic implementation use a default value instead of a select; this
makes it consistent with how the arch-optimized code gets enabled and
also with how CRYPTO_LIB_BLAKE2S_GENERIC gets enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Move the sm3 library code into lib/crypto.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Remove legacy compression interface
- Improve scatterwalk API
- Add request chaining to ahash and acomp
- Add virtual address support to ahash and acomp
- Add folio support to acomp
- Remove NULL dst support from acomp
Algorithms:
- Library options are fuly hidden (selected by kernel users only)
- Add Kerberos5 algorithms
- Add VAES-based ctr(aes) on x86
- Ensure LZO respects output buffer length on compression
- Remove obsolete SIMD fallback code path from arm/ghash-ce
Drivers:
- Add support for PCI device 0x1134 in ccp
- Add support for rk3588's standalone TRNG in rockchip
- Add Inside Secure SafeXcel EIP-93 crypto engine support in eip93
- Fix bugs in tegra uncovered by multi-threaded self-test
- Fix corner cases in hisilicon/sec2
Others:
- Add SG_MITER_LOCAL to sg miter
- Convert ubifs, hibernate and xfrm_ipcomp from legacy API to acomp"
* tag 'v6.15-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (187 commits)
crypto: testmgr - Add multibuffer acomp testing
crypto: acomp - Fix synchronous acomp chaining fallback
crypto: testmgr - Add multibuffer hash testing
crypto: hash - Fix synchronous ahash chaining fallback
crypto: arm/ghash-ce - Remove SIMD fallback code path
crypto: essiv - Replace memcpy() + NUL-termination with strscpy()
crypto: api - Call crypto_alg_put in crypto_unregister_alg
crypto: scompress - Fix incorrect stream freeing
crypto: lib/chacha - remove unused arch-specific init support
crypto: remove obsolete 'comp' compression API
crypto: compress_null - drop obsolete 'comp' implementation
crypto: cavium/zip - drop obsolete 'comp' implementation
crypto: zstd - drop obsolete 'comp' implementation
crypto: lzo - drop obsolete 'comp' implementation
crypto: lzo-rle - drop obsolete 'comp' implementation
crypto: lz4hc - drop obsolete 'comp' implementation
crypto: lz4 - drop obsolete 'comp' implementation
crypto: deflate - drop obsolete 'comp' implementation
crypto: 842 - drop obsolete 'comp' implementation
crypto: nx - Migrate to scomp API
...
|
|
Pull block updates from Jens Axboe:
- Fixes for integrity handling
- NVMe pull request via Keith:
- Secure concatenation for TCP transport (Hannes)
- Multipath sysfs visibility (Nilay)
- Various cleanups (Qasim, Baruch, Wang, Chen, Mike, Damien, Li)
- Correct use of 64-bit BARs for pci-epf target (Niklas)
- Socket fix for selinux when used in containers (Peijie)
- MD pull request via Yu:
- fix recovery can preempt resync (Li Nan)
- fix md-bitmap IO limit (Su Yue)
- fix raid10 discard with REQ_NOWAIT (Xiao Ni)
- fix raid1 memory leak (Zheng Qixing)
- fix mddev uaf (Yu Kuai)
- fix raid1,raid10 IO flags (Yu Kuai)
- some refactor and cleanup (Yu Kuai)
- Series cleaning up and fixing bugs in the bad block handling code
- Improve support for write failure simulation in null_blk
- Various lock ordering fixes
- Fixes for locking for debugfs attributes
- Various ublk related fixes and improvements
- Cleanups for blk-rq-qos wait handling
- blk-throttle fixes
- Fixes for loop dio and sync handling
- Fixes and cleanups for the auto-PI code
- Block side support for hardware encryption keys in blk-crypto
- Various cleanups and fixes
* tag 'for-6.15/block-20250322' of git://git.kernel.dk/linux: (105 commits)
nvmet: replace max(a, min(b, c)) by clamp(val, lo, hi)
nvme-tcp: fix selinux denied when calling sock_sendmsg
nvmet: pci-epf: Always configure BAR0 as 64-bit
nvmet: Remove duplicate uuid_copy
nvme: zns: Simplify nvme_zone_parse_entry()
nvmet: pci-epf: Remove redundant 'flush_workqueue()' calls
nvmet-fc: Remove unused functions
nvme-pci: remove stale comment
nvme-fc: Utilise min3() to simplify queue count calculation
nvme-multipath: Add visibility for queue-depth io-policy
nvme-multipath: Add visibility for numa io-policy
nvme-multipath: Add visibility for round-robin io-policy
nvmet: add tls_concat and tls_key debugfs entries
nvmet-tcp: support secure channel concatenation
nvmet: Add 'sq' argument to alloc_ctrl_args
nvme-fabrics: reset admin connection for secure concatenation
nvme-tcp: request secure channel concatenation
nvme-keyring: add nvme_tls_psk_refresh()
nvme: add nvme_auth_derive_tls_psk()
nvme: add nvme_auth_generate_digest()
...
|
|
Separate out the HKDF functions into a separate module to
to make them available to other callers.
And add a testsuite to the module with test vectors
from RFC 5869 (and additional vectors for SHA384 and SHA512)
to ensure the integrity of the algorithm.
Signed-off-by: Hannes Reinecke <hare@kernel.org>
Acked-by: Eric Biggers <ebiggers@kernel.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Keith Busch <kbusch@kernel.org>
|
|
Select the generic LIB options if the Crypto API algorithm is
enabled. Otherwise this may lead to a build failure as the Crypto
API algorithm always uses the generic implementation.
Fixes: 17ec3e71ba79 ("crypto: lib/Kconfig - Hide arch options from user")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202503022113.79uEtUuy-lkp@intel.com/
Closes: https://lore.kernel.org/oe-kbuild-all/202503022115.9OOyDR5A-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Provide core structures, an encoding-type registry and basic module and
config bits for a generic Kerberos crypto library.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
Add an AEAD template that does hash-then-cipher (unlike authenc that does
cipher-then-hash). This is required for a number of Kerberos 5 encoding
types.
[!] Note that the net/sunrpc/auth_gss/ implementation gets a pair of
ciphers, one non-CTS and one CTS, using the former to do all the aligned
blocks and the latter to do the last two blocks if they aren't also
aligned. It may be necessary to do this here too for performance reasons -
but there are considerations both ways:
(1) firstly, there is an optimised assembly version of cts(cbc(aes)) on
x86_64 that should be used instead of having two ciphers;
(2) secondly, none of the hardware offload drivers seem to offer CTS
support (Intel QAT does not, for instance).
However, I don't know if it's possible to query the crypto API to find out
whether there's an optimised CTS algorithm available.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: "David S. Miller" <davem@davemloft.net>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Jakub Kicinski <kuba@kernel.org>
cc: Paolo Abeni <pabeni@redhat.com>
cc: Simon Horman <horms@kernel.org>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
cc: netdev@vger.kernel.org
|
|
The ARCH_MAY_HAVE patch missed arm64, mips and s390. But it may
also lead to arch options being enabled but ineffective because
of modular/built-in conflicts.
As the primary user of all these options wireguard is selecting
the arch options anyway, make the same selections at the lib/crypto
option level and hide the arch options from the user.
Instead of selecting them centrally from lib/crypto, simply set
the default of each arch option as suggested by Eric Biggers.
Change the Crypto API generic algorithms to select the top-level
lib/crypto options instead of the generic one as otherwise there
is no way to enable the arch options (Eric Biggers). Introduce a
set of INTERNAL options to work around dependency cycles on the
CONFIG_CRYPTO symbol.
Fixes: 1047e21aecdf ("crypto: lib/Kconfig - Fix lib built-in failure when arch is modular")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Closes: https://lore.kernel.org/oe-kbuild-all/202502232152.JC84YDLp-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove the "crct10dif" shash algorithm from the crypto API. It has no
known user now that the lib is no longer built on top of it. It has no
remaining references in kernel code. The only other potential users
would be the usual components that allow specifying arbitrary hash
algorithms by name, namely AF_ALG and dm-integrity. However there are
no indications that "crct10dif" is being used with these components.
Debian Code Search and web searches don't find anything relevant, and
explicitly grepping the source code of the usual suspects (cryptsetup,
libell, iwd) finds no matches either. "crc32" and "crc32c" are used in
a few more places, but that doesn't seem to be the case for "crct10dif".
crc_t10dif_update() is also tested by crc_kunit now, so the test
coverage provided via the crypto self-tests is no longer needed.
Also note that the "crct10dif" shash algorithm was inconsistent with the
rest of the shash API in that it wrote the digest in CPU endianness,
making the resulting byte array differ on little endian vs. big endian
platforms. This means it was effectively just built for use by the lib
functions, and it was not actually correct to treat it as "just another
hash function" that could be dropped in via the shash API.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20250206173857.39794-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
|
|
Remove crc64-rocksoft from the crypto API. It has no known user now
that the lib is no longer built on top of it. It was also added much
more recently than the longstanding crc32 and crc32c. Unlike crc32 and
crc32c, crc64-rocksoft is also not mentioned in the dm-integrity
documentation and there are no references to it in anywhere in the
cryptsetup git repo, so it is unlikely to have any user there either.
Also, this CRC variant is named incorrectly; it has nothing to do with
Rocksoft and should be called crc64-nvme. That is yet another reason to
remove it from the crypto API; we would not want anyone to start
depending on the current incorrect algorithm name of crc64-rocksoft.
Note that this change temporarily makes this CRC variant not be covered
by any tests, as previously it was relying on the crypto self-tests.
This will be fixed by adding this CRC variant to crc_kunit.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Acked-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20250130035130.180676-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@goog |